LDCM Preliminary Thermal Trades

Prepared by:

Robert Ryan
Mary Pagnutti
Slawomir Blonski
Joe Spruce

Lockheed Martin Space Operations
Stennis Programs
April 23, 2001

Thermal Band Background

Landsat Data Continuity Mission

Problem

The expected cost of adding thermal bands to the next generation LDCM could be significant. Can new technologies be implemented to allow for a low cost useful alternative?

Approach

 Investigate both traditional cooled cross-track scanners and new architectures (cooled and uncooled) which could enable a low cost thermal capability

Heritage Landsat Thermal Specifications ZUSGS

Landsat Data Continuity Mission

MSS and TM

- GSD 120 m
- NEDT 1.4 °K (MSS); 0.5 °K (TM)
- Spectral Range 10.4-12.6 μm (MSS); 10.4-12.5 μm (TM)
- Radiometric Accuracy <10% (TM)
- Dynamic Range 6 bits (MSS); 8 bits (TM)

ETM+

- GSD 60 m
- NEDT 0.5 °K
- Spectral Range 10.4-12.5 μm
- Radiometric Accuracy 2-5%
- Dynamic Range 8 bits 2 different gain settings

Thermal Application GSD Comments

Landsai Data Continuity Mission

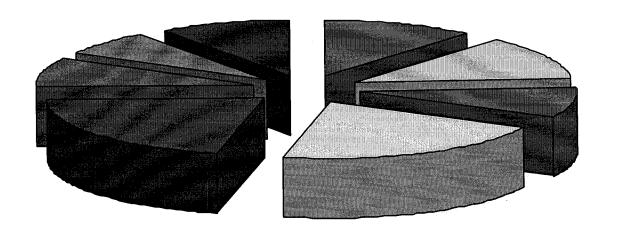
- Many thermal applications have utilized Landsat MSS/TM heritage 120 m GSD
- Conversations with thermal community indicate that 120 m GSD is the maximum useful pixel size for many Landsat thermal applications
 - Cloud detection
 - Volcanology
 - Water body temperature

Review on Applications of Landsat Thermal Data

Landsat Data Continuity Mission

Survey Method:

- Used WWW to survey applications of Landsat thermal data
- Applied Google search engine to survey journal articles, conference papers, reports, and bibliographies
- Focused search on applications of Landsat thermal data for atmospheric, water, and terrestrial studies
- Performed additional searches on specific applications and researchers investigating thermal RS applications
- Also surveyed Landsat, ASTER, and MODIS science team WWW sites
- Developed draft white paper on results of literature review, as well as bibliography of references



General Applications of Landsat 5 Thermal Data

Lanesat Data Continuity Vission

Publication Breakdown by Application Group

- Anthropogenic EIA (8)¹
- Atmospheric Science (9)
- Forestry (6)
- **■** Geologic Research (15)
- Natural Hazards (15)
- **■** Soil Studies (7)
- Vegetation (5)
- **Water (7)**

Based on ~60 publications - some relevant to multiple applications

¹ number of papers given in parenthesis

Specific Applications of Landsat Thermal Data

Landsat Data Continuity Mission

Anthropogenic EIA

- Urbanization
- Land cover change
- Land degradation
- Scaling studies

Atmospheric Science

- Clouds
- Greenhouse gases
- Air pollutants
- Urban climate

Forestry

- Forest regeneration
- Forest wildfires
- Leaf area index
- Temperature zonation
- Scaling studies

- Anthropogenic EIA (8)
- Atmospheric Science (9)
- Forestry (6)
- Geologic Research (15)
- Natural Hazards (15)
- Soil Studies (7)
- **Vegetation (5)**
- **Water (7)**

Geologic Research

- Desert crusts
- Earthquake assessment
- Volcanoes
- Thermal inertia studies
- Mineral mapping

Natural Hazards

- Wildfire
- Volcanism
- Coal fires
- Earthquakes

Water

- Ground water surveys
- Lake temperature
- Thermal plumes
- Cold and hot springs

Soil Studies

- Moisture availability
- Salinity

Vegetation

- Vigor
- Growth

Summary of Landsat Thermal Application Survey WUSGS

Landsat Data Continuity Mission

- Survey indicated several atmospheric, terrestrial and water applications. Application diversity greater than expected
- Survey revealed no papers comparing Landsat 5 and 7 thermal data for utility
- Many Landsat 7 science team members require thermal data, often for use with other Landsat bands
- One Landsat 7 science team member projected that 60 meter thermal data would improve and increase usage for agricultural and vegetation studies
- Survey also identified publications on sharpening of Landsat 5 thermal data
 - These may be useful if LCDM thermal data has a 120 m GSD

Existing Thermal Architectures

Traditional TIR Architectures

-andsai baia Continuity Vission

- Cross-track scanning systems
- Cooled either actively or passively
- Small number of HgCdTe detectors
- Typically large GSD
 - Landsat is the smallest (60 m) of the cross-track scanning systems
- Telescope diameter typically driven by SNR considerations and not diffraction
- Most systems are multispectral

Existing TIR Systems

andsat Data Continuity Mission

Satellite	Sensor	Band	Spectral Range [mm]	Telescope Diameter [cm]	GSD [m]	Swath [km]
HgCdTe	Pushbroo	7				
MTI	MTI		8.00 - 8.40	36	20	12
		Maria Maria	8.40 - 8.85			
	an select librar		10.20 - 10.70			
HgCdTe	Cross-trac	k scanne	ers			
Landsat	7 ETM+	6	10.4 - 12.5	40	60	185
Terra	ASTER	10	8.125 - 8.475	24	90	60
		. 11	8.475 - 8.825			••
		12	8.925 - 9.275			TO THE
		13	10.25 - 10.95			
	Kimpallaber	14	10.95 - 11.65		iki dibulla bahasi	
Terra	MODIS	27	6.535 - 6.895	18	1000	2330
		28	7.175 - 7.475	ing the state of t		
		29	8.400 - 8.700			The training
		30	9.580 - 9.880		T 10.020	
	CHO PERIODA	31	10.780 - 11.280			Patricipa (1966)
	Contraction (Co.	32	11.770 - 12.270	illeria (m. 12.77 i salitation)		
		33	13.185 - 13.485			rusal haari katalahan
	fridalka kara	34	13.485 - 13.785		ve e Allei	iri siysiidi.
		35	13.785 - 14.085	President of Control o	The state of	e nigradonim esta
		36	14.085 - 14.385			
and the same of		Steller, and				

Note ETM+ is the only single band instrument!

New Thermal Architectures

New Pushbroom and Framing Camera Thermal Architectures

-anosai data Continuity Mission

 Pushbroom systems and framing cameras can provide significant sensitivity advantages over crosstrack scanners

SNR ~ (no. of detectors) $^{0.5}$

- The increased integration time associated with pushbroom systems and framing cameras allow:
 - Higher SNR
 - Smaller GSD
 - Potential use of uncooled detectors

Potential New Configurations

Lanest Data Community Mission

Cooled detectors

- Advanced Land Imager (ALI) pushbroom architecture (common telescope for all bands)
 - Multispectral Thermal Imager (MTI)

Uncooled detectors

- ALI pushbroom architecture (common telescope for all bands)
 - > ALI common telescope and optics
- Custom TIR system separate from ALI
 - > Framing camera and filter wheel (ISIR)
 - ➤ Pushbroom multispectral system (THEMIS)

Infrared Detector Types

Landsat Data Continuity Mission

Cooled detectors

- Photovoltaic or photoconducting mechanisms
 - ➤ HgCdTe and GaAs quantum well devices
- High framing rates and low noise

Uncooled detectors

- Rely on a thermal response
 - > Bolometric, pyroelectric, and thermionic devices
- Have slow framing rates and are relatively insensitive
- Lighter and smaller system packaging possible

Uncooled Thermal Detector Characteristics USGS

Landsat Data Continuity Mission

Primarily developed for military systems

f/1 optics, 30-60 Hz framing rates

Microbolometers

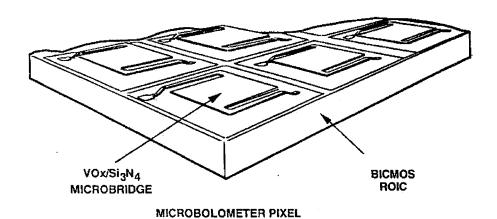
 Silicon micro-machined devices provide excellent thermal isolation from substrate. Highest sensitivity demonstrated: f/1 optics, 30 Hz framing rate, NEDT < 20 mK

Pyroelectric

- Older technology: f/1 optics, 30 Hz framing rate, **NEDT** ~ 100 mK
- Requires a chopper

Thermionic

New technology, but holds promise



Silicon Microbolometers

Landsa: Data Continuity Mission

- Black absorber with a broadband response (atmospheric window 8-14 microns)
- Typical FPA
 - 320x240 pixels with 50 µm pitch
 - 640x480 pixels with 25 μm pitch
 - Very high fill factor >90%

STRUCTURE

W.Radford, D. Murphy, M. Ray, S. Propst, A. Kennedy, J Kojiro, J. Woolaway, K Soch, "320 x 240 silicon microbolometer uncooled IRFPAs with on-chip offset correction," SPIE Vol. 2746, pp. 82-92.

ALI Architecture with Cooled Detectors ZUSGS

Landsat Data Continuity Mission

Scale-up MTI hardware (One set of trades)

- 13 km swath scaled up to 185 km
- Aperture kept to 36 cm
- 20 m GSD scaled up to 60 m
- NEDT 0.2-0.3 °K or better
- ~3000 pixels across (6 modules of 512 pixels each)
 - > ~25 cm long TIR focal plane
- ~7 yr expected lifetime with redundant refrigerant system
 - > Too many detectors to be passively cooled
- ~\$50M-\$100M for 2-3 multispectral thermal bands
 - > A few additional thermal bands will not significantly increase cost
 - Cost dominated by cooled detectors
 - > Cost model does not fully account for commonality with other ALI bands

Uncooled Framing Camera/Pushbroom Pathfinding Thermal Instruments

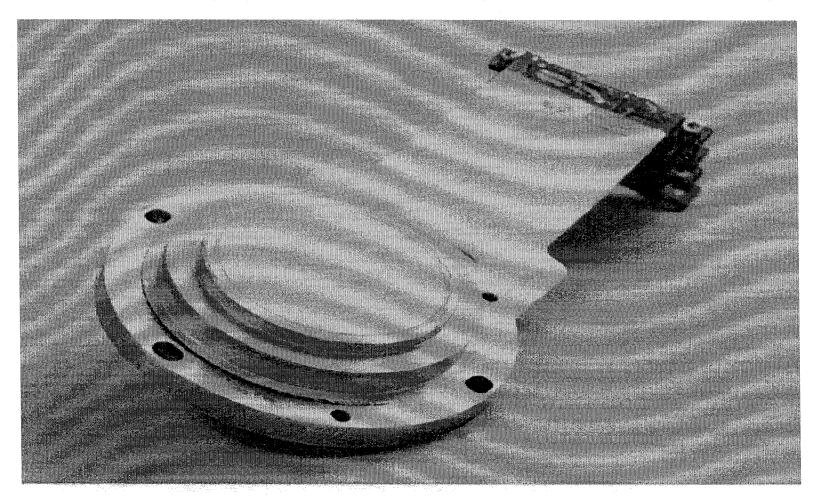
Landsat Data Continuity Mission

Infrared Spectral Imaging Radiometer (ISIR)

- Flown on space shuttle mission STS-85 August 1997 as part of a cloud science experiment
- Uncooled Lockheed Martin microbolometer array (327x240 pixels)
 - > Framing imager with filter wheel
 - ➤ 3 narrow bands at 8.55, 10.8 and 11.8 µm
 - ➤ 1 broad band at 7-13 µm
 - > 250 m GSD
 - > 85 km swath from shuttle altitude
 - > f-number 0.73, Len diameter 50 mm
 - ➤ NEDT 0.01-0.06 °K at all wavelengths with TDIx40 for a 300 °K scene temperature
 - > Ambient and cold inflight calibration capability
- Extremely good quality imagery was obtained for each band
- Accuracy goal was met to within a factor of 2 or 3
 - > Pre-production prototype detector used

Uncooled Pushbroom Pathfinding Thermal Instruments

Landsat Data Continuity Mission


Thermal Emission Imaging System IR Sensor (THEMIS)

- Flown on Mars 2001 Orbiter, launched April 2001, to map Martian surface mineralogy
- Uncooled Raytheon microbolometer array (320x240 50 μm pitch pixels)
 - > Pushbroom imager with precision-aligned stripe filter
 - ➤ 9 bands between 6.2 and 15.5 µm
 - > f/1.6 optics
 - ➤ 4.4 degree FOV
 - > 12.9 cm aperture
 - > 30 Hz readout
 - > 100 m GSD
- ~ \$12M for instrument

THEMIS FPA Assembly

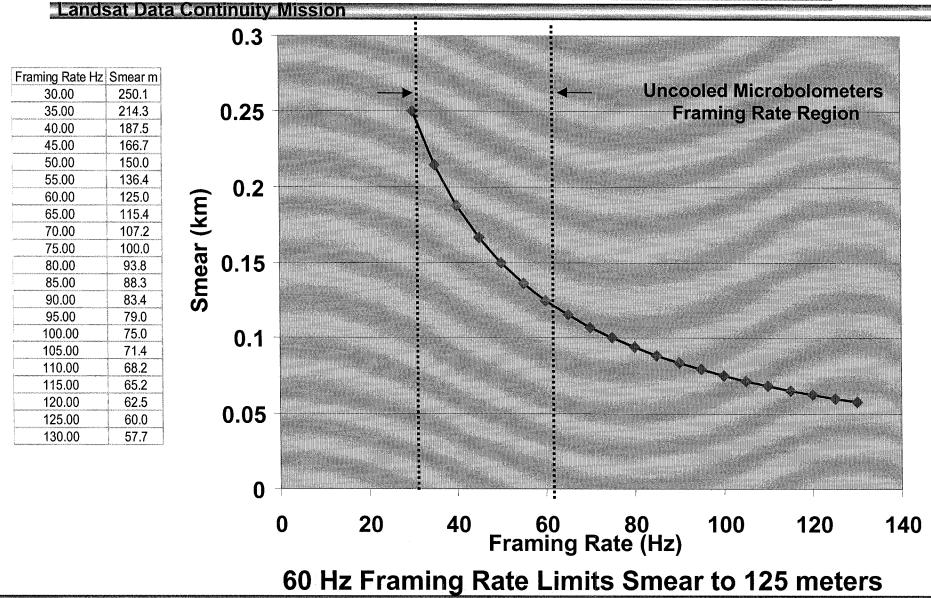
Landsal Data Continuity Mission

D.Murphy, W. Radford, J. Finch, A. Kennedy, J. Wyles, M. Ray, G. Polchin, N. Hua, C. Peterson, "Multi-spectral Uncooled Microbolometer Sensor for the Mars 2001 Orbiter THEMIS Instrument," Proceedings of IEEE Aerospace Conference Big Sky, Montana.

anosai Daia Cominuity Vission

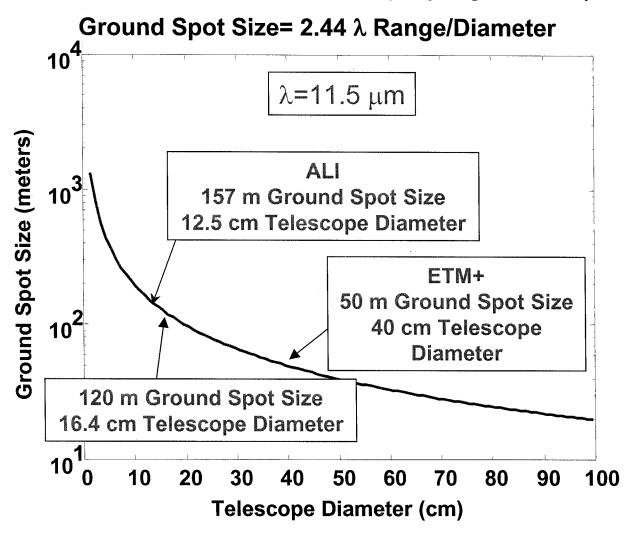
New Thermal Architecture Sensor Trades

Thermal GSD Trades


Landsat Data Continuity Vission

- GSD usually set to approximately FWHM of Point Spread Function (PSF)
- Two sensor characteristics drive PSF
 - Framing rate
 - > Smear is defined as how far a pixel moves in an integration time
 - ➤ Typically GSD ~ Orbital Velocity / Frame Rate
 - Telescope diameter
 - ➤ Ground spot size for a diffraction limited system is controlled by Airy Diffraction Pattern
 - ➤ Ground spot size ~ 2.44 Wavelength* Range / Telescope Diameter

Frame Rate Trades for Landsat Orbit



Telescope Diameter Trades

Landsat Data Continuity Mission

Diffraction limited resolution (Rayleigh criteria)

ALI Architecture with Uncooled TIR Detectors

ALI Architecture Trade Space Assumptions **ZUSGS**

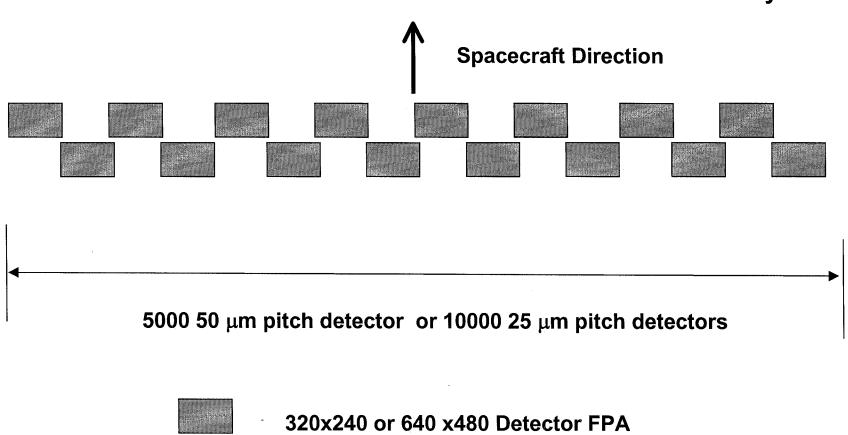
Landsat Data Continuity Mission

- No significant non-recurring engineering for focal planes
 - Initial design limited limited to 60 Hz framing rate
- Fixed f-number of 7.5
- Fixed aperture diameter of 12.5 cm
- Diffraction limited telescope at center wavelength (11.5 μm)
- Sufficient room to add a double bank of 320x240 50 μm or 640x480 25 μm microbolometer arrays to ALI system
- Approximately 100 mK NEDT for a 10.4-12.5 μm 300 K source (based on a f/1 optic, 30 Hz framing rate, 8-14 μm band having 20 mK NEDT)
- Desired NEDT ~0.5 K for 300 K background
- Infrared thermal source can be inserted in front of the optics for calibration

ALI Architecture with IR Uncooled FPA

Landsat Data Continuity Mission

- Focal Plane Spot size = 2.44 * f # * λ = 210 μm
- Ground Spot size at a 705 km orbit is 157 m
- 16 FPAs are necessary for both 25 and 50 µm pitch detectors (185 km swath)
 - Approximately 5000 for 50 µm pitch detectors
 - Approximately 10000 for 25 µm pitch detectors
- Approximately 37.6 m GSD for a single 50 μm pitch detector and 18.8 m GSD for a single 25 μm pitch detector



Possible FPA Configuration

Landsat Data Continuity Wission

Double Bank of Uncooled Microbolometer Detector Arrays

NEDT Scaling

Landsat Data Continuity Mission

- Everything scaled to f/1 optics, 8-14 μm band and 30Hz framing rate with 20 mK NEDT
 - Newer configurations may reach 10 mK NEDT
 - Calculations are only good to about a factor of 2
- NEDT scales as (f-number)²
 - Scale factor 56 for f7.5 ALI optics
- NEDT scales as (spectral bandwidth)⁻¹
 - Scale factor = 2.7 for 10-4-12.5 μ m band
 - Conservative since detector rolls off faster at end of spectral band
- NEDT scales as ~(framing rate)⁻¹
 - Scale factor =2

NEDT Scaling

Landsat Data Continuity Wission

- NEDT scales as (No. of pixels averaged)^{0.5}
 - NEDT for a single pixel =5.4 K
 - Requires ~116 pixels to average to achieve 0.5 K

NEDT Improvements

Landszi Daia Continuity Mission

TDI

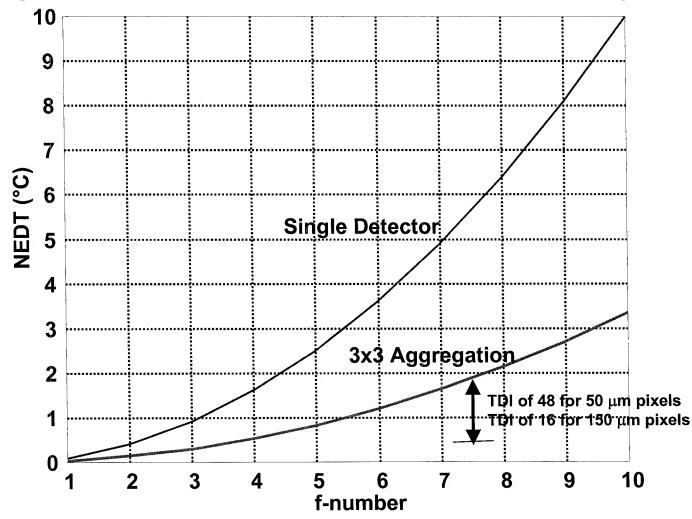
- Maximum theoretical improvement of about 15 for 240 pixels
- NEDT improves as (No. of TDI pixels)^{0.5}

Pixel aggregation

NEDT improves (No. of pixels aggregated) ^{0.5}

Point design

- Aggregation
 - ➤ 3x3 aggregation
 - ➤ Corresponds to 112m x112 m pixel
- TDI of 48 to achieve 0.5 K
 - > TDI of 16 for 3x3 aggregation
- Other possibilities should be analyzed but the above approach could provide Landsat 5 like thermal imaging performance



NEDT Scaling with F#

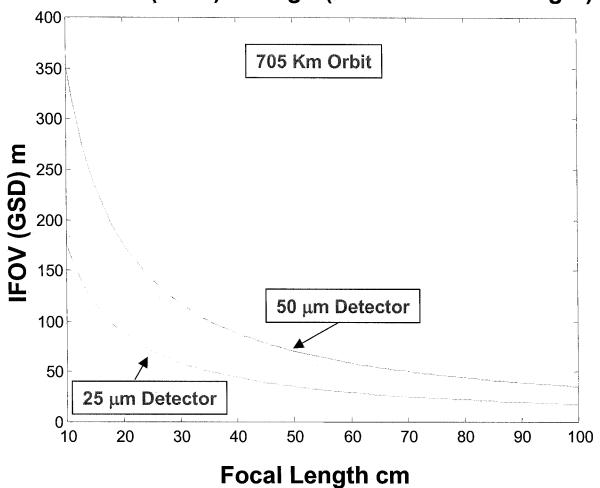
Landsa: Data Continuity Mission

Single detector NEDT 100 mK for f/1, 60 Hz readouts, 10.4-12.5 µm

Custom TIR Sensor (Point Design)

Landsat Data Continuity Mission

- Assume new telescope and sensor separate from ALI
 - Assume 120 m spatial resolution desired
- 125 smear on ground (60 Hz readout)
- Aperture ~16.4 cm
 - 120 m Ground Spot Size
- Focal Length ~29.4 cm
 - 120 m GSD for 50 μm detectors
 - 60 m GSD for 25 μm detectors



Focal Length Trade

andsa Data Continuity Mission

LDCM Preliminary Thermal Trades 4/19/01

Custom TIR Sensor (Point Design)

Landsal Data Continuity Vission

- F-number 1.8
 - A little fast but probably achievable (THEMIS f-number 1.6)
- NEDT for Landsat Band 300 K Background
 - NEDT of a single detector ~ 0.3 K with a TDI of 1
 - TDI of 25 could produce a 0.06 K NEDT system!!!!
- Detector spot size 50.5 μm at λ=11.5 μm
 - ~1542 detectors at 50 µm pitch for 185 km swath with
 120 m GSD
 - ~Five 320x240 FPAs
- Many detectors available for other bands
 - ASTER like instrument
 - Oversampling
 - ➤ Use 25 µm pitch detectors and over sample PSF

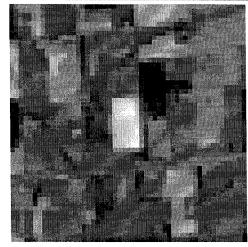
Simulated Thermal Imagery Using ATLAS 10.4-12.5 µm Band Over Brookings SD

andsat Data Continuity Mission

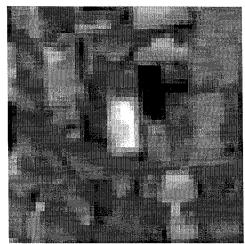
60 m GSD 70 m PSF

30 m GSD 110 m PSF

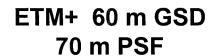
60 m GSD 110 m PSF

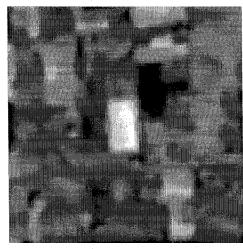


120 m GSD 110 m PSF

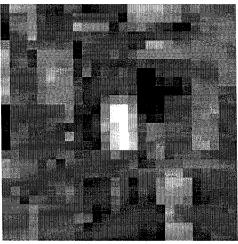


Simulated Thermal Imagery


Landsat Data Continuity Mission



30 m GSD 110 m PSF



60 m GSD 110 m PSF

MSS 120 m GSD 110 m PSF

Oversampled imagery partially recovers spatial resolution enabling smaller telescope (ALI) and slow framing rates could still produce high quality imagery

Conclusions

Landsat Data Continuity Mission

- Multispectral pushbroom thermal systems have already been flown in space
 - MTI
- Uncooled microbolometers cameras have already been flown in space or soon will be
 - ISIR
 - THEMIS
- Current technology uncooled Si microbolometers could provide approximately 120 m GSD data with NEDT <0.5 C in an ALI pushbroom architecture
 - PSF limited by framing rates of OTS electronics
 - Future systems could attain 60 m GSD with oversampling
 - Approximately ~20 M\$ (TBR) additional cost on an ALI system
 - Independent SBRC estimate 0.33 K sensitivity possible with 245 K background

Conclusions Continued

Landsal Data Continuity Mission

- Initial analysis shows a custom designed uncooled thermal system could be extremely sensitive
 - Approximately ~20 M\$ (TBR) sensor
 - Multispectral thermal capability adds incremental cost to a single band thermal system
 - Oversampling could provide near ETM+ capability without large telescope and custom electronics
 - Custom electronics could potentially provide 60 m smear with reasonable sensitivity
 - Could be combined with atmospheric correction bands

Next Steps Flow Chart

Landsat Data Continuity Mission

Next Steps-System Engineering Approach Susce

Landsat Data Continuity Mission

Perform thermal surveys

- Continue thermal applications literature survey
- Speak with ASTER, MODIS and AVHRR communities

Set requirements

NEDT, PSF, GSD, aliasing, spectral band(s), etc

Simulate data sets

- Utilize NASA SSC ATLAS and other airborne thermal systems
- Model sensor parameters using generated requirements

Evaluate requirements

- Evaluate simulated imagery
- Solicit thermal community input

Next Steps, Continued

-andsal-Dala Continuity Vission

Develop sensor model

 Modify existing physics-based algorithms to model sensor hardware

Perform sensor design trades

- Telescope diameter, f#, detector pitch, readout noise, TDI, etc
- Calibration techniques

Estimate system cost

- Continue dialog with industry
- Utilize standard cost estimation models

USGS

Backup

Existing Space-based Uncooled TIR Instruments

Landsal Dala Continuity Vission

Thermal Emission Spectrometer (TES)

- Flown on Mars Global Surveyer, launched November 1996 and completed its primary mission Jan 2001
- Uncooled pyroelectric array (3 sets of 2x3 pixels)
 - ➤ Michelson Interferometer (6.25-50 microns)
 - > 2 broad band channels at 0.3-2.7 and 4.5-100 microns
 - > 3 km ground sample distance at Nadir
 - > 24.9x16.6 mrad Field of View
 - > 8.3 mrad pixel size

ALI Parameters

Landsat Data Continuity Mission

Telescope features

- 12.5 cm entrance pupil
- 15 Degree x 1.26 Field-of-View
- Telecentric, f7.5 design, focal length 93.73 cm
- Unobscured, reflective optics

Orbit

- 705 Km sun synchronous with 10:01 AM descending node time

Existing TIR Systems

Landsat Data Continuity Mission

Satellite	Sensor	Architecture	Band	Spectral Range	Detector	Telescope	Spatial Resolution		Swath	Quant	NEAT
			***************************************	[µm]	Material	Diameter	GSD	MTF @	[km]	[bit]	[K]
						[cm]	[m]	Nyquist			13
Landsat 7	ETM+	Cross-track scanner	6	10.4 - 12.5	HgCdTe	40	60	0.3	185	8 of 9	diality
Terra ASTE	ASTER	Cross-track scanner	10	8.125 - 8.475	HgCdTe	24	90	0.35	60	12	0.2
		O. GOO TIGOR COGNITION	11	8.475 - 8.825	rigoure	24	"	0.33	- 00	12	0.∠
			12	8.925 - 9.275			11		11	"	"
			13	10.25 - 10.95			11		11	- "	11
			14	10.95 - 11.65			11		11	11	"
NOAA	AVUIDD	Constant		400 440							
NOAA	AVHRR	Cross-track scanner	4	10.3 - 11.3	HgCdTe	20	1100	0.3	2800	10	0.12
			5	11.5 - 12.5		* *************************************	"	<u>.</u>	"	"	11
Terra Mo	MODIS	Cross-track scanner	27	6.535 - 6.895	HgCdTe	18	1000	0.35	2330	12	0.25
			28	7.175 - 7.475			11		"	"	0.25
			29	8.400 - 8.700			н	<u> </u>	11		0.05
			30	9.580 - 9.880			11		"	"	0.25
			31	10.780 - 11.280			"		11	11	0.05
			32	11.770 - 12.270			11		"	11	0.05
			33	13.185 - 13.485			11		"	"	0.25
			34	13.485 - 13.785			"		11	"	0.25
			35	13.785 - 14.085			"		"	"	0.25
			36	14.085 - 14.385			"		"	11	0.35
MTI	MTI	Pushbroom	L	8.00 - 8.40	HgCdTe	36	20		12	12	0.025
			Т	8.40 - 8.85	god.to	 	"	CONTROL MANAGEMENT	112	"	0.023
			N	10.20 - 10.70			11		"	11	0.027
ERS-2	ATSR-2	Conical scanner	1	11.5 - 12.3	Zaringani in interessional di alta	11	1100	HIII STEEL	500	12	0.02
			2	10.6 - 11.3			11		11	11	"